Copied to
clipboard

G = C3xC23.6D6order 288 = 25·32

Direct product of C3 and C23.6D6

direct product, metabelian, supersoluble, monomial

Aliases: C3xC23.6D6, C62.33D4, (C22xS3):C12, (C2xDic3):C12, (C6xDic3):2C4, (C2xC6).44D12, C23.6(S3xC6), C6.43(D6:C4), C6.D4:1C6, C32:6(C23:C4), C22.3(S3xC12), C62.36(C2xC4), C22.2(C3xD12), (C22xC6).24D6, (C2xC62).9C22, (S3xC2xC6):2C4, C3:1(C3xC23:C4), C2.4(C3xD6:C4), (C2xC6).1(C3xD4), (C3xC22:C4):1S3, C22:C4:1(C3xS3), (C3xC22:C4):1C6, (C2xC6).1(C2xC12), (C2xC6).58(C4xS3), (C6xC3:D4).5C2, (C2xC3:D4).1C6, C6.2(C3xC22:C4), C22.8(C3xC3:D4), (C3xC6.D4):3C2, (C2xC6).61(C3:D4), (C32xC22:C4):1C2, (C22xC6).16(C2xC6), (C3xC6).42(C22:C4), SmallGroup(288,240)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C3xC23.6D6
C1C3C6C2xC6C22xC6C2xC62C6xC3:D4 — C3xC23.6D6
C3C6C2xC6 — C3xC23.6D6
C1C6C22xC6C3xC22:C4

Generators and relations for C3xC23.6D6
 G = < a,b,c,d,e,f | a3=b2=c2=d2=1, e6=b, f2=bcd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, ece-1=fcf-1=cd=dc, de=ed, df=fd, fef-1=cde5 >

Subgroups: 354 in 121 conjugacy classes, 38 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, D4, C23, C23, C32, Dic3, C12, D6, C2xC6, C2xC6, C22:C4, C22:C4, C2xD4, C3xS3, C3xC6, C3xC6, C2xDic3, C2xDic3, C3:D4, C2xC12, C3xD4, C22xS3, C22xC6, C22xC6, C23:C4, C3xDic3, C3xC12, S3xC6, C62, C62, C6.D4, C3xC22:C4, C3xC22:C4, C2xC3:D4, C6xD4, C6xDic3, C6xDic3, C3xC3:D4, C6xC12, S3xC2xC6, C2xC62, C23.6D6, C3xC23:C4, C3xC6.D4, C32xC22:C4, C6xC3:D4, C3xC23.6D6
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, D4, C12, D6, C2xC6, C22:C4, C3xS3, C4xS3, D12, C3:D4, C2xC12, C3xD4, C23:C4, S3xC6, D6:C4, C3xC22:C4, S3xC12, C3xD12, C3xC3:D4, C23.6D6, C3xC23:C4, C3xD6:C4, C3xC23.6D6

Permutation representations of C3xC23.6D6
On 24 points - transitive group 24T587
Generators in S24
(1 3 5)(2 4 6)(7 9 11)(8 10 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(2 12)(4 8)(6 10)(13 19)(15 21)(17 23)
(1 11)(2 12)(3 7)(4 8)(5 9)(6 10)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 19 11 13)(2 18)(3 23 7 17)(4 22)(5 15 9 21)(6 14)(8 16)(10 20)(12 24)

G:=sub<Sym(24)| (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (2,12)(4,8)(6,10)(13,19)(15,21)(17,23), (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,19,11,13)(2,18)(3,23,7,17)(4,22)(5,15,9,21)(6,14)(8,16)(10,20)(12,24)>;

G:=Group( (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (2,12)(4,8)(6,10)(13,19)(15,21)(17,23), (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,19,11,13)(2,18)(3,23,7,17)(4,22)(5,15,9,21)(6,14)(8,16)(10,20)(12,24) );

G=PermutationGroup([[(1,3,5),(2,4,6),(7,9,11),(8,10,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(2,12),(4,8),(6,10),(13,19),(15,21),(17,23)], [(1,11),(2,12),(3,7),(4,8),(5,9),(6,10),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,19,11,13),(2,18),(3,23,7,17),(4,22),(5,15,9,21),(6,14),(8,16),(10,20),(12,24)]])

G:=TransitiveGroup(24,587);

On 24 points - transitive group 24T629
Generators in S24
(1 3 2)(4 6 5)(7 9 11)(8 10 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 11)(2 9)(3 7)(4 12)(5 10)(6 8)(13 22)(14 17)(15 24)(16 19)(18 21)(20 23)
(1 6)(2 4)(3 5)(7 10)(8 11)(9 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 2 3)(4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 24 8 15)(2 20 12 23)(3 16 10 19)(4 14 9 17)(5 22 7 13)(6 18 11 21)

G:=sub<Sym(24)| (1,3,2)(4,6,5)(7,9,11)(8,10,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,11)(2,9)(3,7)(4,12)(5,10)(6,8)(13,22)(14,17)(15,24)(16,19)(18,21)(20,23), (1,6)(2,4)(3,5)(7,10)(8,11)(9,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,24,8,15)(2,20,12,23)(3,16,10,19)(4,14,9,17)(5,22,7,13)(6,18,11,21)>;

G:=Group( (1,3,2)(4,6,5)(7,9,11)(8,10,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,11)(2,9)(3,7)(4,12)(5,10)(6,8)(13,22)(14,17)(15,24)(16,19)(18,21)(20,23), (1,6)(2,4)(3,5)(7,10)(8,11)(9,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,24,8,15)(2,20,12,23)(3,16,10,19)(4,14,9,17)(5,22,7,13)(6,18,11,21) );

G=PermutationGroup([[(1,3,2),(4,6,5),(7,9,11),(8,10,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,11),(2,9),(3,7),(4,12),(5,10),(6,8),(13,22),(14,17),(15,24),(16,19),(18,21),(20,23)], [(1,6),(2,4),(3,5),(7,10),(8,11),(9,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,2,3),(4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,24,8,15),(2,20,12,23),(3,16,10,19),(4,14,9,17),(5,22,7,13),(6,18,11,21)]])

G:=TransitiveGroup(24,629);

63 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D3E4A4B4C4D4E6A6B6C···6Q6R···6W6X6Y12A···12P12Q···12V
order1222223333344444666···66···66612···1212···12
size11222121122244121212112···24···412124···412···12

63 irreducible representations

dim1111111111112222222222224444
type+++++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12S3D4D6C3xS3C4xS3D12C3:D4C3xD4S3xC6S3xC12C3xD12C3xC3:D4C23:C4C23.6D6C3xC23:C4C3xC23.6D6
kernelC3xC23.6D6C3xC6.D4C32xC22:C4C6xC3:D4C23.6D6C6xDic3S3xC2xC6C6.D4C3xC22:C4C2xC3:D4C2xDic3C22xS3C3xC22:C4C62C22xC6C22:C4C2xC6C2xC6C2xC6C2xC6C23C22C22C22C32C3C3C1
# reps1111222222441212222424441224

Matrix representation of C3xC23.6D6 in GL4(F7) generated by

2000
0200
0020
0002
,
0632
6042
0060
0001
,
1526
1553
0010
5210
,
6000
0600
0060
0006
,
3041
3652
1115
0004
,
2433
0334
1634
4456
G:=sub<GL(4,GF(7))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[0,6,0,0,6,0,0,0,3,4,6,0,2,2,0,1],[1,1,0,5,5,5,0,2,2,5,1,1,6,3,0,0],[6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[3,3,1,0,0,6,1,0,4,5,1,0,1,2,5,4],[2,0,1,4,4,3,6,4,3,3,3,5,3,4,4,6] >;

C3xC23.6D6 in GAP, Magma, Sage, TeX

C_3\times C_2^3._6D_6
% in TeX

G:=Group("C3xC2^3.6D6");
// GroupNames label

G:=SmallGroup(288,240);
// by ID

G=gap.SmallGroup(288,240);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-3,365,92,1683,1271,9414]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=1,e^6=b,f^2=b*c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,e*c*e^-1=f*c*f^-1=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<